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Abstract
We extend the Blonder–Tinkham–Klapwijk (BTK) theory to study transport properties of
semiconductor two-dimensional electron gas (2DEG)/superconductor junctions, including the
Rashbar spin–orbit interaction in a 2DEG of finite width. The effects of Rashba spin–orbit
interaction on the conductance are investigated, and a reduction of this conductance is found. A
couple of well known results for quantized conductance are verified. Moreover, the averaged
spin value and shape of spin fluctuation in the 2DEG are calculated. It is found that the
y-component of the spin (Sy) is even, while the x- and z-components are odd, with respect to
the propagating mode index. Consequently, Sx and Sz are summed up to vanish, while Sy

accumulates to a finite value. Sy is explicitly given and a spin-polarization in the y-direction is
found in the 2DEG near the interface.

In recent years there has been a continual increase of interest in
spin-dependent electron transport in hybrid structures, aiming
at possible applications of electrons’ spin (the second degree
of freedom apart from the charge) in electronics. This
research field is now known as spintronics. Systems comprised
of ferromagnets or ferromagnetic semiconductors, in which
carriers are spin-polarized, have been studied both extensively
and intensively [1–10]. As spin-dependence (spin-polarized)
is concerned, however, it does not necessarily always rely on
ferromagnetism. More recently, the inverse spin Hall effect,
found in semiconductors with a two-dimensional electron
gas (2DEG), opened a new area for spin-dependent electron
transport [11]. The spin Hall effect, which is actually a
kind of dissipationless spin current, was discovered in p-
doped zincblende-type semiconductors [12]. Sinova et al [13]
had also predicted a universal spin Hall conductivity for the
2DEG with Rashba-type spin–orbit interaction (SOI), where
spin currents always accompany charge currents. Koga et al
had reported a spin-filter device using a nonmagnetic resonant
tunneling diode, where the Rashba SOI combined with the spin
blockade phenomena can enhance the spin-filtering efficiency
up to 99.9% [14]. In short, the semiconductor 2DEG, in which
spin-polarization may occur both intrinsically and extrinsically,

has received particular attention, and may play an important
role in future spintronics.

In general, the Rashba SOI is a result of the up–
down asymmetric confining electrostatic potential in the
semiconductor heterojunction quantum well, where the 2DEG
is located [13, 15]. The Rashba SOI couples the spin degree of
freedom to the motion of electrons or holes, and consequently
leads to spin splitting of the energy band [16]. Such energy
band splitting can be equivalently interpreted as the result
of an effective pseudo-magnetic field lying in the plane of
the 2DEG. This pseudo-magnetic field is distinguished from
a real exchange magnetic field in that it depends on the
wavevectors of the electrons or holes, and at the same time
does not break the time-inversion symmetry. In narrow-gap
InAs semiconductor hybrid structures, for example, the SOI is
remarkably strong and leads to a band splitting of about 5 meV
between up and down spin directions [17], which is of the same
order as the energy gap of conventional superconductors.

It is noted that from the experimental point of view that the
2DEG on a clean InAs surface allows us to create high-quality
ohmic contacts with superconductors. Many previous studies
on 2DEG/superconductor (SC) hybrid systems concentrated
on the effects of the Andreev reflection on electron transport
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properties or behaviors of magnetoconductance when an
external magnetic field was presented [18–21]. At the
same time, the effects of the Rashba SOI on both electron
and spin transport were not considered as much. In
normal metal/2DEG/normal metal Josephson junctions, as we
know, a drastic reduction of the experimentally measured
critical current, with respect to the theoretical predictions, is
observed [22–24]. Dimitrova et al [25] had explored the
role of the Rashba SOI in the above case and found that
its presence is not sufficient to explain such a reduction.
In the present paper, we will theoretically investigate the
transport properties of clean semiconductor (2DEG)/SC hybrid
junctions, with the focus on effects of the Rashba SOI
in the 2DEG and superconductivity of the SC. Differential
conductance and average spin value, as well as the shape of
the spin fluctuation in the 2DEG are calculated, with proper
counting of propagation modes that correspond to a finite width
of the 2DEG.

We consider 2DEG/SC junctions as illustrated in the
inset of figure 1(b). The 2DEG of width W is located at
x < 0 and described by the Rashba Hamiltonian, while
the superconductor is located at x > 0 and described by
the conventional Bardeen–Cooper–Schrieffer (BCS) theory,
respectively. As is well known, the quasiparticle wavefunction
in such systems satisfies the following Bogoliubov–de Gennes
(BdG) equation [26, 27]

[
H0(r) �(r)
�∗(r) −H0(r)

][
fk(r)
gk(r)

]
= E

[
fk(r)
gk(r)

]
(1)

where �(r) = �0�(x), with �0 being the superconducting
energy gap of the SC at zero temperature. The superconducting
energy gap is assumed to be constant in the present paper. E
is the quasiparticle energy relative to the Fermi energy level
EF. fk(r) and gk(r) are components of the wavefunction. The
single particle Hamiltonian H0(r) is given as

H0(r) = − h̄2

2
� · 1

m(r)
� +USO + V (x)+ Vc(y)− EF (2)

where m(r) = m∗
L�(−x)+ m∗

R�(x), with m∗
L and m∗

R being
the effective electron mass in the 2DEG and SC, respectively,
and �(x) the unit step function. USO = α(r)(σ × p) · n̂/h̄
is the Rashba spin–orbit interaction in the 2DEG, with α(r) =
α�(−x) being the Rashba parameter, σ = (σx , σy, σz) are
the Pauli matrices, p is the electron momentum, and n̂ is the
unit vector normal to the plane of the 2DEG, respectively.
V (x) = V0δ(x) is a δ-type potential describing a scattering
barrier at the interface (x = 0). Vc(y) represents a hard-wall
confining potential at the edges of the 2DEG (y = ±W/2) and,
consequently, the 2DEG is treated as a quasi-one-dimensional
quantum wire with quantized transverse modes. In figure 1,
schematic diagrams of (a) propagating waves, where tangential
arrows denote spin orientations, and (b) the band structures,
are shown. As a general solution of the BdG equation (1), the
wavefunction in the whole junction is written as

�l(r, s) =
∑

s

ψl(y)ψ
s
l (x) (3)

Figure 1. Schematic diagrams of (a) propagating waves, with
tangential arrows denoting spin orientations; and (b) the band
structures, with solid (hollow) circles representing electrons (holes)
in the 2DEG or ELQ (HLQ) in the SC, respectively. The inset
displays the geometry of a 2DEG/superconductor junction system.

where ψl(y) =
√

2
W sin[ lπ

W (y + W
2 )], with l being the quantum

number which defines the propagating mode, and

ψ
s,L
l (x) =

(
1

0

)
eiks,e

l xχ
1s
L + bs

l P

(
1

0

)
e−iks,e

l xχ
bs

l
L

+ as
l

(
0

1

)
eiks,h

l xχ
as

l
L + bs

l

(
1

0

)
e−iks,e

l xχ
bs

l
L

+ as
l

(
0

1

)
eiks,h

l xχ
as

l
L (4)

for x < 0,

ψ
s,R
l (x) = cs

l

(
u

v

)
eiqe

l xχ
cs

l
R + ds

l

(
v

u

)
e−iqh

l xχ
ds

l
R

+ cs
l

(
u

v

)
eiqe

l xχ
cs

l
R + ds

l

(
v

u

)
e−iqh

l xχ
ds

l
R (5)

for x > 0. The five terms of ψs,L
l are waves of incident

electrons, normal reflected electrons (bs
l , bs

l ), and Andreev
reflected holes (as

l , as
l ), in the 2DEG, while the four terms of

ψ
s,R
l are electron-like quasiparticle (ELQ) (cs

l , cs
l ) and hole-

like quasiparticle (HLQ) (ds
l , ds

l ) waves in the SC, respectively.
The superscript s(= ±1) is the band index, indicating which
band the quasiparticle belongs to, with s = −s. kls and
qls the x-components of the quasiparticle wavevectors in the
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2DEG and SC, respectively. From the dispersion relations
Es(k) = h̄2[(k + skR)

2 − k2
R]/2m∗

L − (E L
F + eV ) in the 2DEG,

and E(q) = [�2 + (h̄2q2/2m∗
R − E R

F )]1/2 in the SC, we get
the wavevectors explicitly as

ks,e(h) = [2m∗
L(E

L
F + eV + ηe(h)E)/h̄

2 + k2
R]1/2 − skR (6)

qe(h) = (2m∗
R/h̄

2)1/2[E R
F + ηe(h)(E

2 −�2
0)

1/2]1/2 (7)

where kR = αm∗
L/h̄

2, ηe(h) = 1(−1). The wavevector
components parallel to the interface are assumed to remain
unchanged during the reflection and transmission processes,
i.e. they satisfy the condition,

ks,e sinφs
l = ks,h sin θ s

l = ks,e sin γ s
l = ks,h sinβs

l = ky (8)

χLs are the corresponding spinor functions of the transporting
quasiparticles in the 2DEG, which are coupled to the spatial
motion via wavevectors and given as

χ
1s
L = (ie−iφs

l /2, eiφs
l /2)T/

√
2 (9)

χ
bs

l
L = (ie−iφ ′

l/2, eiφ ′
l /2)T/

√
2 (10)

χ
as

l
L = (−ie−iθ s

l /2, eiθ s
l /2)T/

√
2 (11)

χ
bs

l
L = (−ie−iγ s

l /2, eiγ s
l /2)T/

√
2 (12)

χ
as

l
L = (ie−iβs

l /2, eiβs
l /2)T/

√
2 (13)

where φs
l = cos−1(ks,e

l /ks,e), φ′
l = π − φs

l , θ s
l =

cos−1(ks,h
l /ks,h), γ s

l = π − cos−1(ks,e
l /ks,e), βs

l =
cos−1(ks,h

l /ks,h). All angles are indicated in figure 1(a). The
superscript T denotes matrix transposition. χRs are spinor
functions in the SC, and, because of the absence of spin–orbit
coupling and spin-singlet superconductivity therein, the χRs

are assumed to be either spin up or down, as χ
cs

l
R = χ

ds
l

R =
(1 1)T/

√
2, and χ

ds
l

R = χ
cs

l
R = ( 1 −1 )T/

√
2. Here, we

would like to point out that there must be present diffusive spin
scattering at the interface and also in the SC near the interface,
to meet the requirements of spin-singlet superconductivity of
the SC. Such a diffusive scattering may be interpreted as a
kind of proximate effect. Consequently, an accompanying
dissipation heating effect may occur and will be investigated
elsewhere. The Bogoliubov coherence factors are given as

u2 = 1 − v2 = 1

2

⎛
⎝1 +

√
E2 −�2

0

E

⎞
⎠ . (14)

The scattering wavefunction coefficients in equations (3)
and (4) can be determined by the boundary condition that
ensures the continuity of the electron wavefunction and
electronic flux conservation. The boundary conditions in the
x-direction are given as

ψ
s,L
l (0) = ψ

s,R
l (0) (15)

vL
x ψ

s,L
l (0) = vR

x ψ
s,R
l (0)+ 2iV0

h̄
ψ

s,R
l (0). (16)

Given the above Hamiltonian with SOI interaction (equa-
tion (2)), the group velocity of quasiparticles is readily given
as

v = ∂H/∂(h̄k) = − ih̄

m(r)
� −α(r)

h̄
σ × n̂. (17)

As a result, their x-components are explicitly given as
vL

x = −i(h̄/m∗
L)∂/∂x − ασy/h̄ in the 2DEG, and

vR
x = −i(h̄/m∗

R)∂/∂x in the SC, respectively. Substituting
wavefunction equations (4) and (5) into the boundary condition
equations (15) and (16), and after a lengthy algebraic
calculation, we have obtained all of the coefficients, which are
not explicitly given here because of their lengthy form.

With the definition of the electronic current density

J e = ieh̄/2m∗
L

∑
s,l

[(ψs,L
l )†∇ψs,L

l − ψ
s,L
l (∇ψs,L

l )†] (18)

and following the BTK theory [27], we get differential charge
conductance of the 2DEG/SC junctions in the small bias
regime as

Ge
x = 2e2

h

∑
s,l

[
1 + v

bs
l

l

v
1s
l

|bs
l |2 + v

as
l

l

v
1s
l

|as
l |2

+ v
bs

l
l

v
1s
l

|bs
l |2 + v

as
l

l

v
1s
l

|as
l |2

]
(19)

where vls are x-components of the group velocity of transport
quasiparticles in the 2DEG, which are explicitly given as

v
1s
l = h̄(ks,e

l + kR cosφs
l )/m∗

L (20)

v
bs

l
l = h̄(−ks,e

l + kR cosφ′
l)/m∗

L (21)

v
as

l
l = h̄(ks,h

l − kR cos θ s
l )/m∗

L (22)

v
bs

l
l = h̄(−ks,e

l − kR cos γ s
l )/m∗

L (23)

v
as

l
l = h̄(ks,h

l + kR cosβs
l )/m∗

L . (24)

It is noted that equation (19) is consistent with the well known
results of the BTK theory where the spinor functions were not
considered.

In our numerical calculation, we chose parameters
analogous to the experimental ones, as m∗

L = 0.036me,
m∗

R = me, with me the mass of an electron, �0 = 1.7 meV,
E L

F = 37 meV, E R
F = 510 meV, α0 = 10−11 eV m, and

the width W = 15π/kL
F (kL

F is the Fermi wavevector of the
2DEG for α = 0), respectively. It should be noted that the
Fermi levels in the 2DEG and SC are aligned for zero bias,
while the band bottoms are different, as shown in figures 1.
The summation over l in equation (18) is done as follows:
for a certain width (W ) of the 2DEG, the maximum of l
is determined as lmax = int(ks,e

f W/π), for the instance of
an electron of band s incidents. All wavevectors and the
corresponding incident angles are determined by equation (8),
together with the condition that all the kys are equal to
lπ/W . Then we sum up the contributions of all these modes
[−lmax, lmax]. In figures 2(a) and (b), the zero-bias differential
conductance of the 2DEG/SC junctions is plotted as a function
of the incident energy E/�0, with respect to different values

3
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Figure 2. Zero-bias differential conductance of 2DEG/SC junctions,
with respect to (a) different interface barrier strength Z and
(b) different values of SOI strength α, respectively. With
m∗

L = 0.036me, m∗
R = me, �0 = 1.7 meV, E L

F = 37 meV,
E R

F = 510 meV, α0 = 10−11 eV m, and W = 15π/k L
F .

of Z and α, respectively. The superconducting character of
the conductance is clearly observed in both the two figures.
Figure 2(a) is a result which is similar to several previous
works, except for its smaller value of the non-dimensional
barrier strength parameter Z (= 2m∗

L V0/h̄
2qF). The smaller Z

corresponds to the larger difference between the wavevectors in
the 2DEG and SC, for the same interface barrier. Figure 2(b)
shows the effect of SOI (denoted by α) in the 2DEG. It is
found that the SOI reduces the conductance in general. Such
results are consistent with [25]. Moreover, we found that with
increasing the quasiparticle energy E and the strength of SOI
α, a propagating mode will be blocked, and a sudden reduction
(about 2e2/h) of G is observed, at some particular points.

In figures 3(a) and (b), we show the zero-bias differential
conductance as a function of the width of the 2DEG, where
E = 0.5�0 was chosen, and other parameters are the same as
in figure 2. Quantized steps of the differential conductance,
which correspond to integer numbers of propagating modes
with continuous increase of the 2DEG width, are clearly
visible. Effects of Z and α are shown in 3(a) and (b),
respectively. It is found that the width of a single conductance

(a)

(b)

Figure 3. Zero-bias differential conductance as a function of width
of the 2DEG for 2DEG/SC junctions, with respect to (a) different
interface barrier strength Z and (b) different values of SOI strength
α, respectively. With E = 0.5�0 and other parameters the same as
in figure 2.

step increases with increasing the strength of SOI α, as
shown in figure 3(b), which has the same physical meaning
as increasing α and may block one or more propagating modes
at a certain width of the 2DEG, as shown in figure 2(b).

We now turn our attention to spin transport in the 2DEG.
Note that the transport electrons and holes in different bands
in the 2DEG generally have non-collinear spin directions, say,
depending on the direction of the wavevectors (see figure 1),
and the interference between the propagating waves may
lead to spin fluctuation and accumulation in the 2DEG. The
expectation value of spin in the 2DEG is given as

〈S〉 =
∑
s,l

∫
ρs,l(E) f (E)〈�L

l (r, s)|σ |�L
l (r, s)〉 dE (25)

where ρs,l(E) = W
2π h̄

√
m∗

L/(E − Es,l) is the density of states
of electrons in the quasi-one-dimensional 2DEG for each
mode, with Es,l = h̄2k2

y/2m∗
L being the threshold energy of

mode l for band s, and f (E) = [exp(E/kBT ) + 1]−1 the
Fermi distribution function in the 2DEG. After substituting the
wavefunctions, we get

4
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Figure 4. Sl
i (i = x, y, z) for several propagating modes as indicated, as a function of longitudinal position in the 2DEG, while columns (a),

(b) and (c) correspond to i = x , y, and z, respectively. With eV = 0.5�0, E = 0, α = 0.1α0, W = 15π/k L
F , Z = 0, and other parameters the

same as in figure 2.

Figure 5. The same as in figure 4, except α = α0.
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〈Si (x, y)〉 =
∑
s,l

∫
ρs,l(E) f (E)|ψl(y)|2〈Ss,l

i (x)〉 dE, (26)

with i = x, y, z, and

〈Ss,l
x (x)〉 = h̄

2

{
sinφs

l + |bs
l |2 sinφ′ − |as

l |2 sin θ s
l − |bs

l |2

× sin γ s
l + |as

l |2 sin βs
l + 2 Re

[
bs

l e−i2ks,e
l x + as

l sin

× βs
l + φs

l

2
ei(ks,h

l −ks,e
l )x + bs

l
∗as

l sin
βs

l + φ′

2
ei(ks,e

l +ks,h
l )x

− as
l
∗bs

l sin
θ s

l + γ s
l

2
e−i(ks,h

l +ks ,e
l )x

]
+ 2 Im

[
as

l cos
φs

l + θ s
l

2

× ei(ks,h
l −ks,e

l )x + bs
l cos

φs
l + γ s

l

2
e−i(ks,e

l +ks,e
l )x

+ bs
l
∗as

l cos
θ s

l + φ′

2
ei(ks,e

l +ks,h
l )x

+ bs
l
∗bs

l cos
φ′ + γ s

l

2
ei(ks,e

l −ks,e
l )x + as

l
∗
as

l cos
θ s

l + βs
l

2

× ei(ks,h
l −ks,h

l )x + as
l
∗
bs

l cos
βs

l + γ s
l

2
× e−i(ks,e

l +ks,h
l )x

]}
(27)

〈Ss,l
y (x)〉 = h̄

2

{
− cosφs

l − |bs
l |2 cosφ′ + |as

l |2 cos θ s
l

+ |bs
l |2 cos γ s

l − |as
l |2 cos βs

l + 2 Re

[
−as

l cos
βs

l + φs
l

2

× ei(ks,h
l −ks,e

l )x − bs
l
∗as

l cos
βs

l + φ′

2
ei(ks,e

l +ks,h
l )x

+ as
l
∗bs

l cos
θ s

l + γ s
l

2
e−i(ks,e

l +ks,h
l )x

]
+ 2 Im

[
as

l sin
φs

l + θ s
l

2

× ei(ks,h
l −ks,e

l )x + bs
l sin

φs
l + γ s

l

2
e−i(ks,e

l +ks,e
l )x

+ bs
l
∗as

l sin
θ s

l + φ′

2
ei(ks,e

l +ks,h
l )x + bs

l
∗bs

l sin
φ′ + γ s

l

2

× ei(ks,e
l −ks,e

l )x + as
l
∗
as

l sin
θ s

l + βs
l

2
ei(ks,h

l −ks ,h
l )x

+ as
l
∗
bs

l sin
βs

l + γ s
l

2
e−i(ks ,e

l +ks,h
l )x

]}
(28)

〈Ss,l
z (x)〉 = − h̄

2

{
2 Re

[
as

l cos
φs

l − θ s
l

2
ei(ks,h

l −ks,e
l )x

+ bs
l cos

φs
l − γ s

l

2
e−i(ks,e

l +ks,e
l )x + bs

l
∗as

l cos
φ′ − θ s

l

2

× ei(ks,e
l +ks,h

l )x + bs
l
∗bs

l cos
φ′ − γ s

l

2
ei(ks,e

l −ks,e
l )x

+ as
l
∗as

l cos
θ s

l − βs
l

2
ei(ks,h

l −ks,h
l )x + bs

l
∗
as

l cos
γ s

l − βs
l

2

× ei(ks,e
l +ks,h

l )x

]
+ 2 Im

[
bs

l sin
φs

l − φ′

2
e−i2ks,e

l x

+ as
l sin

φs
l − βs

l

2
ei(ks,h

l −ks,e
l )x + bs

l
∗as

l sin
φ′ − βs

l

2

× ei(ks,e
l +ks,h

l )x + as
l
∗bs

l sin
θ s

l − γ s
l

2
e−i(ks,h

l +ks ,e
l )x

]}
.

(29)

(a)

(b)

Figure 6. Spin value Sy , after summing up all propagating modes
and integrating over E , for each position in the 2DEG, with
kT = 0.5�0, while (a) and (b) correspond to α = 0.1α0 and α0,
respectively. The other parameters are identical to those in figure 4.

(This figure is in colour only in the electronic version)

It is clearly visible that there exist contributions to the
expectation value of spin accumulation from both the
individual wave components and the interference between
them.

We first study the behavior of each propagating mode.
In figure 4, Sl

i (x) = ∑
s Ss,l

i (x) (i = x, y, z) are given for
each mode as a function of longitudinal position in the 2DEG,
with eV = 0.5�0, E = 0, and α = 0.1α0, while columns
(a), (b) and (c) correspond to i = x , y, and z, respectively.
For the sake of clarity, we just show a couple of selected
propagating modes as indicated. The rapid oscillation and long
range fluctuation result from the interference terms such as
exp[i(ks,e

l + ks,h
l )x] and exp[i(ks,e

l − ks,e
l )x], respectively, as

they appear in equations (27)–(29). It is clearly shown that
Sl

y is even, while Sl
x and Sl

z are odd, with respect to the mode
index from −lmax to lmax. Figure 5 shows the same results as
in figure 4, but now α = α0. The effects of different strengths
of SOI are found in α-dependent wavevectors, as contained in
equation (6). It is found that lmax equals 15 for α = 0.1α0, and
14 for α = α0, respectively, for identical width of the 2DEG,
W = 15π/kL

F .
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Therefore, after summing up contributions of all modes
and integrating over incident energy E of the quasiparticles,
Sy reaches a finite and observable value, while at the same
time, Sx and Sz vanish. That is, the expectation value of spin
accumulation has only the y-component, and the quasiparticles
in the 2DEG are spin-polarized in the y-direction. Such a
spin-polarization may be attributed to an electronic current
along the x-direction in the 2DEG (having the same effect as
an electronic field along the x-direction), while the detailed
shape of spin accumulation is determined by factors such as
geometrical dimensions of the sample, the strength of the
electronic field, as well as detailed properties of the SOI in the
2DEG. In figure 6, Sy is plotted in the 2DEG near the interface,
from x = 0 to −10W . The spin amplitude for each site is
shown. For weaker SOI of (a) α = 0.1α0, it is obvious that Sy

has both values of ±h̄/2, while components of −h̄/2 have a
small priority over the h̄/2 ones. For (b) α = α0, however, Sy

has only the −h̄/2 component, which means that a complete
spin-polarization along the y-direction occurs. We would like
to point out that zero spin accumulation exactly at the edges
(y = ±W/2) is a result of vanishing wavefunctions there, in
the hard-wall model.

In summary, we have studied quasiparticle transport
properties in 2DEG/SC junctions, where the 2DEG is of
finite width and with Rashba spin–orbit interaction taken into
account. The behavior of transporting quasiparticles in such a
system is described by the BdG equation. Spinor functions of
quasiparticles in the 2DEG which depend on the wavevectors,
and those in the SC which are assumed to be either up or
down, are all explicitly given. Effects of the Rashba SOI
on the conductance are investigated in detail and a couple
of well known results of quantized conductance are verified.
Moreover, the spin accumulation in the 2DEG is calculated. It
is found that Sy is even, while Sx and Sz are odd, with respect
to the propagating mode index. Consequently, Sx and Sz are
summed up to be vanishing, while a non-zero Sy remains in
the 2DEG near the interface.
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